إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
خطوة 2.1
أعِد كتابة بالصيغة .
خطوة 2.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3
خطوة 3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2
احذِف الأقواس.
خطوة 3.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 4
خطوة 4.1
اضرب كل حد في في .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
أعِد كتابة العبارة.
خطوة 4.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 4.2.2.1
طبّق خاصية التوزيع.
خطوة 4.2.2.2
طبّق خاصية التوزيع.
خطوة 4.2.2.3
طبّق خاصية التوزيع.
خطوة 4.2.3
بسّط ووحّد الحدود المتشابهة.
خطوة 4.2.3.1
بسّط كل حد.
خطوة 4.2.3.1.1
اضرب في .
خطوة 4.2.3.1.2
اضرب في .
خطوة 4.2.3.1.3
انقُل إلى يسار .
خطوة 4.2.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.3.1.5
اضرب في بجمع الأُسس.
خطوة 4.2.3.1.5.1
انقُل .
خطوة 4.2.3.1.5.2
اضرب في .
خطوة 4.2.3.2
أضف و.
خطوة 4.2.3.3
أضف و.
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
طبّق خاصية التوزيع.
خطوة 4.3.2
انقُل إلى يسار .
خطوة 5
خطوة 5.1
اطرح من كلا المتعادلين.
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 5.3
أخرِج العامل من .
خطوة 5.3.1
أخرِج العامل من .
خطوة 5.3.2
أخرِج العامل من .
خطوة 5.3.3
أخرِج العامل من .
خطوة 5.4
اقسِم كل حد في على وبسّط.
خطوة 5.4.1
اقسِم كل حد في على .
خطوة 5.4.2
بسّط الطرف الأيسر.
خطوة 5.4.2.1
ألغِ العامل المشترك لـ .
خطوة 5.4.2.1.1
ألغِ العامل المشترك.
خطوة 5.4.2.1.2
اقسِم على .
خطوة 5.4.3
بسّط الطرف الأيمن.
خطوة 5.4.3.1
اجمع البسوط على القاسم المشترك.
خطوة 5.4.3.2
أعِد كتابة بالصيغة .
خطوة 5.4.3.3
أخرِج العامل من .
خطوة 5.4.3.4
أخرِج العامل من .
خطوة 5.4.3.5
انقُل السالب أمام الكسر.
خطوة 5.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 5.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.